Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions.
نویسندگان
چکیده
At present there are limited therapeutic interventions for patients with mitochondrial myopathies. Exercise training has been suggested as an approach to improve physical capacity and quality of life but it is uncertain whether it offers a safe and effective treatment for patients with heteroplasmic mitochondrial DNA (mtDNA) mutations. The objectives of this study were to assess the effects of exercise training and detraining in eight patients with single, large-scale mtDNA deletions to determine: (i) the efficacy and safety of endurance training (14 weeks) in this patient population; (ii) to determine the effect of more prolonged (total of 28 weeks) exercise training upon muscle and cardiovascular function and (iii) to evaluate the effect of discontinued training (14 weeks) upon muscle and cardiovascular function. Our results show that: (i) 14 weeks of exercise training significantly improved tolerance of submaximal exercise and peak capacity for work, oxygen utilization and skeletal muscle oxygen extraction with no change in the level of deleted mtDNA; (ii) continued training for an additional 14 weeks maintained these beneficial adaptations; (iii) the cessation of training (detraining) resulted in loss of physiological adaptation to baseline capacity with no overall change in mutation load. Patients' self assessment of quality of life as measured by the SF-36 questionnaire improved with training and declined with detraining. Whilst our findings of beneficial effects of training on physiological outcome and quality of life without increases in the percentage of deleted mtDNA are encouraging, we did not observe changes in mtDNA copy number. Therefore there remains a need for longer term studies to confirm that endurance exercise is a safe and effective treatment for patients with mitochondrial myopathies. The effects of detraining clearly implicate physical inactivity as an important mechanism in reducing exercise capacity and quality of life in patients with mitochondrial myopathy.
منابع مشابه
Role of Mitochondria in Ataxia-Telangiectasia: Investigation of Mitochondrial Deletions and Haplogroups
Ataxia-Telangiectasia (AT) is a rare human neurodegenerative autosomal recessive multisystem disease that is characterized by a wide range of features including, progressive cerebellar ataxia with onset during infancy, occulocutaneous telangiectasia, susceptibility to neoplasia, occulomotor disturbances, chromosomal instability and growth and developmental abnormalities. Mitochondrial DNA (mtDN...
متن کاملMitochondrial DNA deletions in muscle satellite cells: implications for therapies
Progressive myopathy is a major clinical feature of patients with mitochondrial DNA (mtDNA) disease. There is limited treatment available for these patients although exercise and other approaches to activate muscle stem cells (satellite cells) have been proposed. The majority of mtDNA defects are heteroplasmic (a mixture of mutated and wild-type mtDNA present within the muscle) with high levels...
متن کاملCharacterisation of repeat and palindrome elements in patients harbouring single deletions of mitochondrial DNA.
Single deletions of mitochondrial DNA (mtDNA) were the first pathogenic mutations to be identified in human mtDNA. In a seminal paper, Holt et al reported the presence of single deletions of the mitochondrial genome in patients presenting with mitochondrial myopathies, and since then, the field has experienced enormous progress. To date, 97 different deletions have been reported in MITOMAP, the...
متن کاملDouble-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans.
Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders and have been found to accumulate during normal aging. Despite the fact that hundreds of deletions have been characterized at the molecular level, their mechanisms of genesis are unknown. We tested the effect of double-strand breaks of muscle mtDNA by developing a mouse model in which a mitochondrially targeted re...
متن کاملThe unusual structures of the hot-regions flanking large-scale deletions in human mitochondrial DNA.
Large-scale deletions of mitochondrial DNA (mtDNA) are common events that have been found to occur in human ageing and in patients with mitochondrial myopathies. The mechanisms by which these deletions occur remain unclear, but several mechanisms have been proposed, such as slipped-mispairing, illegitimate recombination, and oxidative reactions elicited by free radicals. In addition, the DNA to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain : a journal of neurology
دوره 129 Pt 12 شماره
صفحات -
تاریخ انتشار 2006